Skip to content
Navigation

This guide maps AWorld concepts and imports to their Orbiter equivalents.

Package Mapping

AWorldOrbiterNotes
aworld (monolith)orbiter (meta-package)Split into 13 focused packages
aworld.agentsorbiter.agentSingle Agent class replaces LLMAgent, TaskLLMAgent, etc.
aworld.core.toolorbiter.tool@tool decorator, FunctionTool, Tool ABC
aworld.runnerorbiter.runnerrun(), run.sync(), run.stream()
aworld.modelsorbiter.modelsget_provider("openai:gpt-4o") factory
aworld.core.context.amniorbiter.contextClean rewrite — neurons, processors, workspace
aworld.memoryorbiter.memoryShort/long-term, SQLite/Postgres backends
aworld.mcp_clientorbiter.mcpMCP client + @mcp_server decorator
aworld.sandboxorbiter.sandboxLocal + Kubernetes sandboxes
aworld.traceorbiter.traceOpenTelemetry-based tracing
aworld.evaluationsorbiter.evalScorers, reflection, evaluator
aworld.ralph_looporbiter.ralphRalph loop — state, detectors, runner
aworld.experimental.a2aorbiter.a2aAgent-to-Agent protocol

Agent Definition

AWorld:

python
from aworld.agents import LLMAgent
from aworld.config.conf import AgentConfig

config = AgentConfig(name="my-agent", llm_provider="openai", llm_model_id="gpt-4o")
agent = LLMAgent(agent_config=config, task_config=task_config)

Orbiter:

python
from orbiter import Agent

agent = Agent(name="my-agent", model="openai:gpt-4o", instructions="...", tools=[...])

Running Agents

AWorld:

python
from aworld.runner import create_runner
runner = create_runner(agent_config=config, task_config=task_config)
result = await runner.run(task)

Orbiter:

python
from orbiter import run

result = await run(agent, "What is 2+2?")      # async
result = run.sync(agent, "What is 2+2?")        # sync
async for event in run.stream(agent, "prompt"):  # streaming
    print(event)

Tools

AWorld:

python
from aworld.tools.function_tools import FunctionTool
tool = FunctionTool(name="search", func=search_fn, description="...")

Orbiter:

python
from orbiter import tool

@tool
async def search(query: str) -> str:
    """Search the web."""
    return "results"

Multi-Agent (Swarm)

AWorld:

python
from aworld.agents import SwarmComposerAgent
swarm = SwarmComposerAgent(agents=[a, b], swarm_config=config)

Orbiter:

python
from orbiter import Swarm
swarm = Swarm(agents=[a, b], mode="workflow")  # or "handoff", "team"

Context

AWorld:

python
from aworld.core.context.amni.contexts import AmniContext
from aworld.core.context.amni.config import AmniConfig

Orbiter:

python
from orbiter.context import Context, ContextConfig
ctx = Context(config=ContextConfig(automation_level="copilot"))

Key Differences

  1. Single Agent class — AWorld had LLMAgent, TaskLLMAgent, LoopLLMAgent, ParallelLLMAgent, SerialLLMAgent. Orbiter has one Agent with composable behavior via Swarm modes and agent groups.

  2. Model strings — use "provider:model" format (e.g., "openai:gpt-4o", "anthropic:claude-sonnet-4-20250514") instead of separate provider/model config fields.

  3. Async-first — all agent execution is async. Use run.sync() for synchronous contexts.

  4. Modular packages — install only what you need. orbiter-core has zero heavy dependencies.

  5. Type safety — full pyright strict-mode compliance across all packages.