Skip to content
Navigation

Requirements

  • Python 3.11+ — Orbiter uses modern Python features (types.UnionType, asyncio.TaskGroup, ExceptionGroup) that require Python 3.11 or later.
  • An LLM API key — At minimum, you need an API key from OpenAI or Anthropic.

Install with pip

The orbiter meta-package installs orbiter-core plus all standard extras:

bash
pip install git+https://github.com/Midsphere-AI/orbiter-ai.git

Minimal install

If you only need the core agent framework (Agent, Tool, Runner, Swarm) without LLM provider packages:

bash
pip install "orbiter-core @ git+https://github.com/Midsphere-AI/orbiter-ai.git#subdirectory=packages/orbiter-core"

With LLM providers

To use OpenAI and Anthropic models, add the models package:

bash
pip install "orbiter-core @ git+https://github.com/Midsphere-AI/orbiter-ai.git#subdirectory=packages/orbiter-core" \
  "orbiter-models @ git+https://github.com/Midsphere-AI/orbiter-ai.git#subdirectory=packages/orbiter-models"

Individual packages

Install only what you need:

bash
pip install "orbiter-core @ git+https://github.com/Midsphere-AI/orbiter-ai.git#subdirectory=packages/orbiter-core"
pip install "orbiter-models @ git+https://github.com/Midsphere-AI/orbiter-ai.git#subdirectory=packages/orbiter-models"
pip install "orbiter-context @ git+https://github.com/Midsphere-AI/orbiter-ai.git#subdirectory=packages/orbiter-context"
pip install "orbiter-memory @ git+https://github.com/Midsphere-AI/orbiter-ai.git#subdirectory=packages/orbiter-memory"
pip install "orbiter-mcp @ git+https://github.com/Midsphere-AI/orbiter-ai.git#subdirectory=packages/orbiter-mcp"
pip install "orbiter-trace @ git+https://github.com/Midsphere-AI/orbiter-ai.git#subdirectory=packages/orbiter-trace"
pip install "orbiter-eval @ git+https://github.com/Midsphere-AI/orbiter-ai.git#subdirectory=packages/orbiter-eval"
pip install "orbiter-sandbox @ git+https://github.com/Midsphere-AI/orbiter-ai.git#subdirectory=packages/orbiter-sandbox"
pip install "orbiter-a2a @ git+https://github.com/Midsphere-AI/orbiter-ai.git#subdirectory=packages/orbiter-a2a"
pip install "orbiter-cli @ git+https://github.com/Midsphere-AI/orbiter-ai.git#subdirectory=packages/orbiter-cli"
pip install "orbiter-server @ git+https://github.com/Midsphere-AI/orbiter-ai.git#subdirectory=packages/orbiter-server"
pip install "orbiter-train @ git+https://github.com/Midsphere-AI/orbiter-ai.git#subdirectory=packages/orbiter-train"

Environment Variables

Set API keys for the LLM providers you plan to use:

bash
# OpenAI (required for "openai:gpt-4o", "openai:gpt-4o-mini", etc.)
export OPENAI_API_KEY="sk-..."

# Anthropic (required for "anthropic:claude-sonnet-4-20250514", etc.)
export ANTHROPIC_API_KEY="sk-ant-..."

You can also pass API keys programmatically when constructing a provider:

python
from orbiter.models.provider import get_provider

provider = get_provider("openai:gpt-4o", api_key="sk-...")

Or set them in a .env file and load with your preferred method (e.g., python-dotenv).

Development Setup (UV Workspace)

If you want to contribute to Orbiter or work with the full monorepo:

bash
# Clone the repository
git clone https://github.com/Midsphere-AI/orbiter-ai.git && cd orbiter-ai

# Install UV if you don't have it
curl -LsSf https://astral.sh/uv/install.sh | sh

# Sync all workspace packages (installs all 13 packages in editable mode)
uv sync

# Verify the installation
uv run python -c "from orbiter import Agent, run, tool; print('OK')"

Running Tests

bash
# Run all tests
uv run pytest

# Run tests for a specific package
uv run pytest packages/orbiter-core/tests/
uv run pytest packages/orbiter-models/tests/

# Run with verbose output
uv run pytest -v

Linting and Type Checking

bash
# Lint with ruff
uv run ruff check packages/

# Type-check with pyright
uv run pyright packages/orbiter-core/
uv run pyright packages/orbiter-models/

Verify Your Installation

Run this minimal script to confirm everything is working:

python
from orbiter import Agent, tool

@tool
def hello(name: str) -> str:
    """Say hello."""
    return f"Hello, {name}!"

agent = Agent(
    name="greeter",
    model="openai:gpt-4o-mini",
    instructions="You are a friendly greeter.",
    tools=[hello],
)

print(agent.describe())
# {'name': 'greeter', 'model': 'openai:gpt-4o-mini', 'tools': ['hello'],
#  'handoffs': [], 'max_steps': 10, 'output_type': None}

This script only constructs the agent and does not make any LLM calls, so it works without an API key. If this runs without errors, your installation is correct.

Next Steps

Continue to the Quickstart to build and run your first agent.